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There is no unique index that measures the size of the distortion found in a

coordination polyhedron because different indices can result in a different

ordering depending on the mode of the distortion (i.e. the third and higher

moments of the bond-length distribution). This paper proposes the increase in

the average bond length as a suitable index as this is directly related to the

increase in volume of the coordination polyhedron and hence of the unit cell.

Some examples are discussed.

1. Introduction

Using Shannon’s information theory, Lalik (2005) recently proposed

that �H defined in (1) could be used as a measure of the size of the

distortion of a coordination polyhedron.1

�H ¼ ðA=VÞ
P

i

½si lnðsi=s0Þ� ¼ Ahðsi=s0Þ lnðsi=s0Þi; ð1Þ

where the summation is over the N bonds in the coordination poly-

hedron, hi indicates an average over the N bonds, A is a constant

equal to 1/ln2 if �H is measured in bits of information, V is the formal

oxidation state of the central cation (atomic valence), si is the valence

(order) of the ith bond and s0 is the average valence of the bonds in

the coordination sphere, i.e. it is the valence a bond would have in a

regular coordination polyhedron.

The bond lengths, Ri, enter this equation through the bond length–

bond valence correlation (Brown, 2002, pp. 26ff):

si ¼ exp½ðRo� RiÞ=B�; ð2Þ

where Ro and B are constants determined empirically for each type

of bond, Ro being the notional length of a bond of unit valence and B

a measure of the softness of the bond, often taken to be 0.37 Å. These

parameters have been tabulated for most bond types by Brown

(2006).

Other measures of distortion have been proposed but most are

unsatisfactory in one or more ways. Indices based on how closely a

regular coordination polyhedron can be fitted to the observed

distorted polyhedron are sensitive to the method of fitting (Dollase,

1974; Lueken et al., 1987; Makovicki & Balić-Zunić, 1998). Hoppe’s

(1979) effective coordination number (ECoN) and mean fictive ionic

radii (MEFIR) involve complex calculations. Hardcastle & Wachs’

(1990) use of the valence of the strongest bond does not sample the

whole bond-length distribution and is particularly susceptible to

experimental uncertainties. The second moment of the bond-length

distribution used by Urusov (2003) requires that all the ligands be the

same and ignores the significant influence of the higher moments. It is

these higher moments that ensure that there is no unique way of

ranking distortions according to size alone; different measures lead to

different orderings depending on the mode of distortion. However,

Lalik (2005) found a reasonable correlation between �H and many

of the earlier distortion measures, albeit with some scatter.

# 2006 International Union of Crystallography

Printed in Great Britain – all rights reserved

1 This measure, like most other measures of the distortion in coordination
environments, includes only the deviation of the bond lengths from their
average value. It does not measure the deviations of the bond angles from
their ideal values and such angular deviations are ignored in the present study.



An alternative index of bond distortion is suggested by the

distortion theorem of the bond-valence model (Brown, 2002, p. 33).

This theorem, which can be derived from (2), states that the average

bond length in a coordination polyhedron increases with increasing

distortion, providing the sum of the bond valences at the central atom

remains constant. Using the increase in the average bond length, �R,

as an index has the advantage that �R is directly related to the

increase in the volume of the coordination polyhedron. Furthermore,

�R is (at least in principle) a directly measurable quantity and, as

shown below, can be used even when the coordination polyhedron

contains a mixture of ligands.

2. Calculation of DR

�R is determined by subtracting the average bond length, R0, found

in a regular coordination polyhedron from the average bond length in

the observed distorted polyhedron, hRi:

�R ¼ hRi � R0: ð3Þ

While hRi is easy to calculate from the observed bond lengths,

there are problems with determining R0 since in some cases, e.g.

V5+O6 octahedra, undistorted coordination environments are

unknown, and even where such environments are known, the

observed values of R0 cover a range that is similar in size to �R. The

internal strains responsible for these variations unfortunately tend to

be more common in the high-symmetry structures where regular

coordination is most likely to be observed, making such structures

unsuitable sources for R0.

The influence of these strains can, however, readily be removed by

converting the bond lengths to bond valences using (2).

Setting �Ri = Ri � R0, (3) can be written as

�R ¼ hRi � R0 ¼ ð1=NÞ
P
�Ri; ð4Þ

where N is the coordination number, i.e. the number of bonds formed

by the central atom.

Rewriting (2) in the form

lnðsiÞ ¼ ðRo� RiÞ=B; ð5Þ

it is readily shown that

lnðsi=s0Þ ¼ ��Ri=B: ð6Þ

Combining (4) and (6) yields

�R ¼ �ðB=NÞ� lnðsi=s0Þ ¼ �Bhlnðsi=s0Þi: ð7Þ

B is a constant which can be taken as 0.37 Å, and si is calculated from

Ri using (2) and the tabulated constants for Ro and B.2 Ideally s0

should be set equal to V/N, but to allow for experimental uncer-

tainties and the internal strains found in the real crystal, V should be

replaced by the sum of the observed bond valences,
P

si, as this

ensures that
P

si =
P

s0, the condition required by the distortion

theorem. The average bond valence s0 is then equal to
P

si /N, which

is the bond valence expected for a bond in the undistorted environ-

ment. This procedure ensures that the measure of the distortion, �R,

is independent of the measure of the strain,
P

si � V, allowing the

two effects to be analyzed separately.

A comparison of (7) with (1) shows that, apart from the constant

terms, the difference between �R and �H lies in the weighting used

when calculating the average of the logarithm term. This is sufficient

to result in a different ordering of distortions, as can be seen in the

selection of distortion indices shown in Table 1. The largest value of

�H is found for the Tl atom in Tl2TeO3, but there are five other

coordination polyhedra that have larger values of �R. The excep-

tionally large value of �H for this compound is attributable to the

presence of one very short bond, which gives excessive weight to the

largest logarithm term. To help in the comparisons, Table 1 includes a

couple of indicators of the mode of distortion, namely the coordi-

nation number split out as a triplet indicating the number of bonds

significantly stronger than average, the number close to average and

the number significantly weaker than average. In addition, the range

of observed bond valences is shown.

The first six entries in Table 1 illustrate distortions found around d0

transition metals. They indicate that the octahedron around V5+ is

much more distorted than those around Nb5+, Ta5+ and Ti4+. The next

five entries illustrate the Jahn–Teller distortion around Cu2+. Typical

values of �R and �H for this effect are 0.14 and 2.0, respectively.

CuCrO4 is included because it shows an unusually small distortion

and Cu2P2O7 is an example of a structure in which one of the two long

bonds is atypically short (2.33 Å). The last three entries show the

effects of a lone pair. Where the lone pair is only weakly stereoactive,

as around the eight-coordinated Tl atom in TlV3O8, the indices are

small. In Tl2TeO3, where the stereoactivity is more pronounced, the

distortion indices are larger, but surprisingly the distortion indices for

the fully stereoactive lone pair found in TlBO3 are once again small

because the weak bonds are no longer part of the coordination

polyhedron and the three remaining bonds are all about the same

length. The values of the distortion indices are therefore sensitive to

how the bond length cut-off is chosen.

Both �H and �R can be used in cases where the central atom is

bonded to different ligands. In this case it is less clear what is meant

by an undistorted coordination polyhedron. For example, if both

oxygen and chlorine ligands are present, the different sizes of the

atoms would make it unlikely that the M—O and M—Cl bonds will

have the same length, but if they do the Cl atoms will be more

strongly bonded than the O atoms. Converting the bond lengths to

bond valences removes the influence of ligand size, allowing regular

coordination to be defined as that in which all the bonds have the

same valence, thus allowing (1) and (7) to be used. Table 2 shows two

examples of typical Jahn–Teller distortions around Cu atoms with
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Table 1
Distortion indices around various cations.

The three coordination numbers indicate the number of bonds shorter than average, the
number close to average and the number longer than average. Number references are to
the Inorganic Crystal Structure Database (Belsky et al., 2002).

Compound Cation �R �H �R/�H
Coordination
numbers Range (s/s0) Reference

�-VPO5 V 0.136 1.876 0.072 1, 0, 5 0.07–2.21 629
�-VPO5 V 0.095 1.615 0.059 1, 1, 4 0.14–2.17 9413
ZnV2O6 V 0.094 1.521 0.062 2, 2, 2 0.14–1.70 30880
MgTiO3 Ti 0.016 0.373 0.043 3, 0, 3 0.71–1.29 65794
NaNbO3 Nb 0.009 0.200 0.045 2, 2, 2 0.70–1.08 23239
CoTa2O6 Ta 0.000 0.005 0.048 2, 0, 4 0.96–1.05 15854
CuCrO4 Cu 0.048 0.910 0.053 4, 0, 2 0.40–1.30 60825
Cu2P2O7 Cu 0.117 1.568 0.075 4, 0, 2 0.09–1.50 67316
CuO Cu 0.146 2.084 0.070 4, 0, 2 0.15–1.44 16025
[CuO2N2Cl2] Cu 0.145 1.918 0.076 4, 0, 2 0.07–1.36 Table 2
[CuO3NCl2] Cu 0.136 1.996 0.068 4, 0, 2 0.17–1.45 Table 2
TlV3O8 Tl 0.034 0.768 0.044 3, 3, 2 0.53–1.79 65773
Tl2TeO3 Tl 0.105 2.427 0.043 2, 1, 3 0.31–2.66 200965
TlBO3 Tl 0.001 0.013 0.042 0, 3, 0 0.32–0.38 101096

2 While (7) is independent of the value used for Ro, �R varies directly as B. As
it is difficult to determine an accurate value for B for each type of bond, a
universal value of 0.37 Å is often assumed. The true value of B may be
different, but if the standard value of 0.37 Å is used the values of �R can be
directly compared.



three different kinds of ligand. Although the bond lengths vary over a

considerable range, the bond valences show the typical Jahn–Teller

pattern, reflected in the values of the distortion indices given in

Table 1.

Like �H, �R satisfies most of the criteria that are desirable in a

distortion index. Both indices can be used in any situation where

bond valences can be calculated, i.e. in any coordination polyhedron

in which the bonds are polar, including most coordination

compounds. Both sample the complete distribution of bond lengths,

both are easily and robustly calculated, they do not require that all

the ligands be the same, and they are zero for an undistorted poly-

hedron and are otherwise positive. However, �R additionally has the

property of being directly related to the increase in the size of the

coordination polyhedron and hence of the unit cell. For example,

Brown et al. (1997) used �R for the dynamic distortion accom-

panying thermal agitation to calculate thermal expansion.

The author thanks Professor Urusov for many interesting discus-

sions on the problem of measuring distortions in coordination poly-

hedra.
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Table 2
Bond lengths and valences in the two Cu heteroleptic polyhedra in [CuCl(C6H6N4)-
H2O][CuCl(C4H5NO4)]H2O (Gao et al., 2005).

Bond Length Valence Bond Length Valence

Cu1—O5 1.974 0.451 Cu2—O4 1.935 0.501
Cu1—N3 1.996 0.454 Cu2—O2 1.965 0.462
Cu1—N1 2.003 0.446 Cu2—N5 1.991 0.460
Cu1—Cl1 2.250 0.509 Cu2—Cl2 2.235 0.530
Cu1—Cl2 2.831 0.106 Cu2—O5 2.721 0.060
Cu1—O2 3.030 0.026 Cu2—Cl1 3.071 0.055


